Herein, we have studied the direct deoxygenation (DDO) (without prior hydrogenation) of furan, 2-methylfuran and benzofuran on the metal edge of MoS2 with a vacancy created under pressure of dihydrogen. For the three molecules, we found that the desorption of the water molecule for the regeneration of the vacancy is the most endothermic. Based on the thermodynamic and kinetic aspects, the reactivity order of the oxygenated compounds is furan ≈ 2-methylfuran > benzofuran, which is in agreement with literature. We present the key stages of the mechanisms and highlight the effects of substituents.
This journal is © The Royal Society of Chemistry.