Optical super-resolution nanothermometry via stimulated emission depletion imaging of upconverting nanoparticles

Sci Adv. 2024 Jul 19;10(29):eado6268. doi: 10.1126/sciadv.ado6268. Epub 2024 Jul 17.

Abstract

From engineering improved device performance to unraveling the breakdown of classical heat transfer laws, far-field optical temperature mapping with nanoscale spatial resolution would benefit diverse areas. However, these attributes are traditionally in opposition because conventional far-field optical temperature mapping techniques are inherently diffraction limited. Optical super-resolution imaging techniques revolutionized biological imaging, but such approaches have yet to be applied to thermometry. Here, we demonstrate a super-resolution nanothermometry technique based on highly doped upconverting nanoparticles (UCNPs) that enable stimulated emission depletion (STED) super-resolution imaging. We identify a ratiometric thermometry signal and maintain imaging resolution better than ~120 nm for the relevant spectral bands. We also form self-assembled UCNP monolayers and multilayers and implement a detection scheme with scan times >0.25 μm2/min. We further show that STED nanothermometry reveals a temperature gradient across a joule-heated microstructure that is undetectable with diffraction limited thermometry, indicating the potential of this technique to uncover local temperature variation in wide-ranging practical applications.