The cobalt-based metal organic frameworks array derived CoFeNi-layered double hydroxides anode and CoP/FeNi2P heterojunction cathode for ampere-level seawater overall splitting

J Colloid Interface Sci. 2024 Dec 15:676:52-60. doi: 10.1016/j.jcis.2024.07.098. Epub 2024 Jul 14.

Abstract

The seawater electrolysis technology powered by renewable energy is recognized as the promising "green hydrogen" production method to solve serious energy and environmental problems. The lack of low-cost and ampere-level current OER (oxygen evolution reaction) and HER (hydrogen evolution reaction) catalysis limits their industrial application. In this work, a unique tri-metal (Co/Fe/Ni) layered double hydroxide hollow array anode catalyst (CFN-LDH/NF) and the CoP/FeNi2P heterojunction hollow array cathode are successfully prepared via one in-situ growth of Co-MOF on nickel foam (Co-MOF/NF) precursor, which exhibits excellent catalytic performance. The η1000 values of 352 and 392 mV are achieved for CFN-LDH/NF (OER catalyst) in 1.0 M KOH and alkaline seawater solution, respectively. The CFNP/NF with a low overpotential of 281 mV is required to reach 1000 mA cm-2 current density for HER in 1.0 M KOH solution, while the η1000 in alkaline seawater solution is 312 mV. The CFN-LDH/NF||CFNP/NF electrolyzer exhibits excellent long-term durability over 100 h, achieving current density of 500 mA cm-2 at 1.825 V in 1.0 M KOH solution. The construction of hollow tri-metal LDH and phosphides heterostructures may open a new and relatively unexplored path for fabricating high performance seawater splitting catalysis.

Keywords: Alkaline seawater splitting; Heterojunction; Layered double hydroxides; Metal-organic frameworks; Non-noble metal electrocatalyst.