Computing the rate of evolution in spatially structured populations is difficult. A key quantity is the fixation time of a single mutant with relative reproduction rate r which invades a population of residents. We say that the fixation time is "fast" if it is at most a polynomial function in terms of the population size N. Here we study fixation times of advantageous mutants (r > 1) and neutral mutants (r = 1) on directed graphs, which are those graphs that have at least some one-way connections. We obtain three main results. First, we prove that for any directed graph the fixation time is fast, provided that r is sufficiently large. Second, we construct an efficient algorithm that gives an upper bound for the fixation time for any graph and any r ≥ 1. Third, we identify a broad class of directed graphs with fast fixation times for any r ≥ 1. This class includes previously studied amplifiers of selection, such as Superstars and Metafunnels. We also show that on some graphs the fixation time is not a monotonically declining function of r; in particular, neutral fixation can occur faster than fixation for small selective advantages.
Copyright: © 2024 Brewster et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.