Ceria nanocatalyst-supported oxidative organic transformations of aromatic alcohols and p-nitrotoluene

Nanotechnology. 2024 Aug 14;35(44). doi: 10.1088/1361-6528/ad64dc.

Abstract

Hydrothermally derived nanocubes of CeO2(10 nm) were explored as an efficient heterogeneous catalyst in the partial oxidation of aromatic alcohols to the corresponding aldehydes and aerobic oxidation ofp-nitrotoluene top-nitrobenzoic acid. The CeO2nanocatalyst was characterized by x-ray diffraction, transmission electron microscopy (TEM), energy dispersive spectroscopy, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared spectroscopy, thermal gravimetric analysis and ultraviolet-visible spectroscopy. TEM/high-resolution TEM micrographs reveal a morphology of mostly cubic nanostructures with exposed highly active {100} and {110} facets. The surface area of nanoceria was determined by BET analysis and found to be 33.8 m2g-1. To demonstrate the universality of the catalytic system, the selective oxidation of different substrates of benzylic alcohol and complete oxidation ofp-nitrotoluene was investigated under mild conditions. Absolute selectivity towards their respective aldehydes was found to be 99.50% (benzaldehyde), 90.18% (p-chlorobenzaldehyde), 99.71% (p-nitrobenzaldehyde), 98.10% (p-fluorobenzaldehyde), 94.66% (p-anisaldehyde) and 86.14% (cinnamaldehyde). Moreover, the catalytic oxidative transformation of nitrotoluene results in 100% conversion with 99.29% selectivity towards nitrobenzoic acid.

Keywords: alcohols; nanocatalysis; nanocubes; nitrotoluene; oxidative transformations.