B-cell-lymphoma-2 (BCL2) homology-3 (BH3) mimetics are inhibitors of protein-protein interactions (PPIs) that saturate anti-apoptotic proteins in the BCL2 family to induce apoptosis in cancer cells. Despite the success of the BH3-mimetic ABT-199 for the treatment of haematological malignancies, only a fraction of patients respond to the drug and most patients eventually develop resistance to it. Here we show that the efficacy of ABT-199 can be predicted by profiling the rewired status of the PPI network of the BCL2 family via single-molecule pull-down and co-immunoprecipitation to quantify more than 20 types of PPI from a total of only 1.2 × 106 cells per sample. By comparing the obtained multidimensional data with BH3-mimetic efficacies determined ex vivo, we constructed a model for predicting the efficacy of ABT-199 that designates two complexes of the BCL2 protein family as the primary mediators of drug effectiveness and resistance, and applied it to prospectively assist therapeutic decision-making for patients with acute myeloid leukaemia. The characterization of PPI complexes in clinical specimens opens up opportunities for individualized protein-complex-targeting therapies.
© 2024. The Author(s).