Gastric cancer(GC)is one of the most common gastrointestinal malignant tumors in the world, requiring the development of novel therapeutic agents with reduced toxicity. Rehmannia polysaccharide (RPS) possesses immunomodulatory and anti-tumor properties, yet its efficacy is suboptimal. To enhance its biological activity, we subjected RPS to molecular modifications, resulting in phosphorylated Rehmannia polysaccharides (P-RPS). Using the mixed phosphate method, we synthesized P-RPS and optimized the synthesis conditions through a combination of single-factor and response surface methodologies. In vitro studies on P-RPS's anti-tumor activity showed no direct influence on the viability of GC cells. However, P-RPS induced the transformation of PMA-activated THP-1 cells into the M1 phenotype. We collected conditioned medium (CM) of THP-1 cells to stimulate gastric cancer cells and CM-P-RPS significantly promoted apoptosis of gastric cancer cells and inhibited cell proliferation, and reduced cell migration. Mechanistically, CM-P-RPS inhibits the Wnt/β-catenin signaling pathway through LGR6, leading to the suppression of tumor growth. Furthermore, P-RPS demonstrated a significant inhibitory effect on tumor growth in vivo, suggesting its potential as a promising therapeutic agent for GC treatment.
Keywords: Gastric cancer; LGR6; Macrophage polarization; Phosphorylated modification; Rehmannia polysaccharide.
Copyright © 2024 Elsevier B.V. All rights reserved.