2D perovskite passivation strategies effectively reduce defect-assisted carrier nonradiative recombination losses on the perovskite surface. Nonetheless, severe energy losses are causing by carrier thermalization, interfacial nonradiative recombination, and conduction band offset still persist at heterojunction perovskite/PCBM interfaces, which limits further performance enhancement of inverted heterojunction PSCs. Here, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (5FTPP) is introduced between 3D/2D perovskite heterojunction and PCBM. Compared to tetraphenylporphyrin without electron-withdrawing fluoro-substituents, 5FTPP can self-assemble with PCBM at interface into donor-acceptor (D-A) complex with stronger supramolecular interaction and lower energy transfer losses. This rapid energy transfer from donor (5FTPP) to acceptor (PCBM) within femtosecond scale is demonstrated to enlarge hot carrier extraction rates and ranges, reducing thermalization losses. Furthermore, the incorporation of polystyrene derivative (PD) reinforces D-A interaction by inhibiting self-π-π stacking of 5FTPP, while fine-tuning conduction band offset and suppressing interfacial nonradiative recombination via Schottky barrier, dipole, and n-doping. Notably, the multidentate anchoring of PD-5FTPP with FA+, Pb2+, and I- mitigates the adverse effects of FA+ volatilization during thermal stress. Ultimately, devices with PD-5FTPP achieve a power conversion efficiency of 25.78% (certified: 25.36%), maintaining over 90% of initial efficiency after 1000 h of continuous illumination at the maximum power point (65 °C) under ISOS-L-2 protocol.
Keywords: D–A supramolecular interface; conduction band offset; inverted perovskite solar cells; nonradiative recombination loss; thermalization loss.
© 2024 Wiley‐VCH GmbH.