Functional recovery from eccentric injury is maintained in sarcopenic mouse muscle

JCSM Rapid Commun. 2021 Jul-Dec;4(2):222-231. doi: 10.1002/rco2.33. Epub 2021 Jun 2.

Abstract

Background: Eccentric contractions induce muscle damage (EIMD) that compromises muscle function. Poor recovery from EIMD has been suggested to be a contributor to the decline in muscle function evident in sarcopenia, but it is unclear which aspects of muscle function are more susceptible to disruption by EIMD in old versus young muscle. The purpose of this study was to determine the extent of impairment in contractile function (force, fatigue, tetanus and twitch kinetics) during the recovery from EIMD in very old (VO) mice compared to young adult (YA).

Methods: Male CB6F1 were obtained from National Institure of Aging colony. VO mice were 29-31 months of age, and YA mice were 7-9 months of age. The plantarflexor muscles were subjected to 20 eccentric contractions in vivo to induce injury (EIMD). Changes in tetanic force and kinetics were assessed before EIMD, immediately after EIMD and 3 days after EIMD (3dEIMD). Force-frequency and rates of fatigue were assessed 3d-EIMD and compared with baseline. Histological analysis was conducted in injured and non-injured contralateral gastrocnemius muscle.

Results: There was a greater loss in isometric tetanic force immediately following EIMD in VO compared with YA (-31.6% ± 10.4 vs. -21.7% ± 6.0, P < 0.05). At 3d-EIMD, the rate of contraction of tetanus began to recover in VO, but not in YA (20.8% vs. -6.8%, P < 0.05), whereas the extent of recovery of force tended to be greater in VO than YA (39.3% vs. 17.1%, P = 0.08) when compared with tetanic function immediately after injury. Compared with function pre-injury (baseline), VO and YA had similar deficits in tetanic force (-7.3% ± 5.3 vs. -9.2% ± 6.0, respectively) and kinetics at Day 3. Twitch kinetics (rate of relaxation) recovered faster in VO compared with YA. The rate of muscle fatigue was similar to baseline values, with VO continuing to be more fatigue resistant than YA 3d-EIMD. There were no detectable differences in muscle mass or myofibre cross-sectional area despite continued deficits in force following EIMD in either age group.

Conclusions: Despite clear functional deficits and greater susceptibility to injury, aged sarcopenic muscle exhibited a similar ability to recover contractile function to younger muscle following EIMD. In addition, neither age group showed accelerated muscle fatigue in the recovery phase after EIMD; thus, sarcopenic mouse muscles do not appear to be more susceptible to long-term functional impairment than young healthy muscles.

Keywords: Atrophy; Exercise-induced damage; Fatigue; Force; Regeneration; Skeletal muscle.