Background and purpose: The seventh most common type of cancer with increasing diagnosis rates around the world is head and neck squamous cell carcinoma (HNSCC). Specificity proteins (SPs) have been known for their role in the regulation of cellular division, growth, and apoptotic pathways in various cancers. In this work, we analyzed the expression levels of SPs in HNSCC to assess their diagnostic and prognostic biomarker potential.
Experimental approach: Differential gene expression and correlation analysis methods were used to determine the top dysregulated genes in HNSCC. Functional enrichment and protein-protein interaction analyses were done with the DAVID database and Cytoscape software to understand their function and biological processes. Receiver operating test, logistic regression, and Cox regression analyses were performed to check SP genes' diagnostic and prognostic potential.
Findings/results: SP1 (LogFC = -0.27, P = 0.0013) and SP2 (LogFC = -0.20, P = 0.0019) genes were upregulated in HNSCC samples, while SP8 (LogFC = 2.57, P < 0.001) and SP9 (LogFC = 2.57, P < 0.001) genes were downregulated in cancer samples. A moderate positive correlation was observed among the expression levels of SP1, SP2, and SP3 genes. The SP8 and SP9 genes with AUC values of 0.79 and 0.75 demonstrated diagnostic potential which increased to 0.84 when both genes were assessed by logistic regression test. Also, the SP1 gene held a marginally significant prognostic potential.
Conclusion and implications: Our findings clarify the potential of SP transcription factors as candidate diagnostic and prognostic biomarkers for early screening and treatment of HNSCC.
Keywords: Head and neck squamous cell carcinoma; SP1; Specificity protein; TCGA.
Copyright: © 2024 Research in Pharmaceutical Sciences.