FAIRsoft-a practical implementation of FAIR principles for research software

Bioinformatics. 2024 Aug 2;40(8):btae464. doi: 10.1093/bioinformatics/btae464.

Abstract

Motivation: Software plays a crucial and growing role in research. Unfortunately, the computational component in Life Sciences research is often challenging to reproduce and verify. It could be undocumented, opaque, contain unknown errors that affect the outcome, or be directly unavailable and impossible to use for others. These issues are detrimental to the overall quality of scientific research. One step to address this problem is the formulation of principles that research software in the domain should meet to ensure its quality and sustainability, resembling the FAIR (findable, accessible, interoperable, and reusable) data principles.

Results: We present here a comprehensive series of quantitative indicators based on a pragmatic interpretation of the FAIR Principles and their implementation on OpenEBench, ELIXIR's open platform providing both support for scientific benchmarking and an active observatory of quality-related features for Life Sciences research software. The results serve to understand the current practices around research software quality-related features and provide objective indications for improving them.

Availability and implementation: Software metadata, from 11 different sources, collected, integrated, and analysed in the context of this manuscript are available at https://doi.org/10.5281/zenodo.7311067. Code used for software metadata retrieval and processing is available in the following repository: https://gitlab.bsc.es/inb/elixir/software-observatory/FAIRsoft_ETL.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computational Biology / methods
  • Metadata
  • Software*