DNA manipulation is an essential tool in molecular microbiology research that is dependent on the ability of bacteria to take up and preserve foreign DNA by horizontal gene transfer. This process can be significantly impaired by the activity of bacterial restriction modification systems; bacterial operons comprising paired enzymatic activities that protectively methylate host DNA, while cleaving incoming unmodified foreign DNA. Ocr is a phage-encoded protein that inhibits Type I restriction modification systems, the addition of which significantly improves bacterial transformation efficiency. We recently established an improved and highly efficient transformation protocol for the important human pathogen group A Streptococcus using commercially available recombinant Ocr protein, manufacture of which has since been discontinued. In order to ensure the continued availability of Ocr protein within the research community, we have generated tools and methods for in-house Ocr production and validated the activity of the purified recombinant protein.