The Role of Diffusion Tensor Imaging in CNS Tuberculosis

Cureus. 2024 Jun 23;16(6):e62998. doi: 10.7759/cureus.62998. eCollection 2024 Jun.

Abstract

Background and objective Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a significant global health concern, with India being a hotspot for the disease burden. Central nervous system (CNS) tuberculosis, though comprising a smaller proportion of total TB cases, is associated with significant morbidity and mortality. This study aimed to explore the utility of diffusion tensor imaging (DTI) in assessing the microstructural changes in white matter tracts associated with CNS tuberculosis. Materials and methods This study was conducted over two years at the All India Institute of Medical Sciences, Rishikesh. We employed a cross-sectional observational design and included patients with definite or highly probable tuberculous meningitis, alongside healthy controls. Results Our findings revealed a significant reduction in fractional anisotropy (FA) values in various white matter tracts of patients with CNS tuberculosis compared to healthy individuals. This reduction in FA correlated with the severity of tuberculous meningitis, particularly in the corpus callosum. Additionally, DTI highlighted distinct patterns of white matter involvement around intraparenchymal lesions, suggesting potential implications for clinical outcomes. The study emphasizes the utility of FA values in grading disease severity and prognosticating treatment outcomes in CNS tuberculosis. Conclusions Overall, this study provides valuable insights into the microstructural alterations in white matter tracts associated with CNS tuberculosis, highlighting the potential of DTI in early diagnosis, grading disease severity, and monitoring treatment response. We believe these findings will pave the way for further research to optimize the clinical management of this debilitating disease.

Keywords: cns tuberculosis; intracranial tuberculoma; neurologic prognosis; • diffusion tensor imaging (dti); • fractional anisotropy (fa).