A study was conducted to investigate the sorption of 85Sr from aqueous solutions using a fabricated magnesium molybdenum titanate (MgMoTi) composite. The MgMoTi composites were synthesized through the co-precipitation technique and characterized using different analytical tools, including FT-IR, XRD, SEM, and EDX. The sorption studies focused on 85Sr and examined factors such as shaking time, pH, ionic strength, temperature, initial ion concentration, and saturation capacity. The results obtained from the study indicated that, under optimum sorption conditions, the saturation capacity for 85Sr onto S-4 and S-5 was determined to be 23.31 and 37.72 mg g-1, respectively. The sorption of 85Sr exhibited dependence on pH and ionic strength. The kinetics of the sorption process followed the pseudo-2nd-order model, while the thermodynamics revealed an endothermic and spontaneous nature. Desorption studies revealed that 0.1 M HCl was the most effective eluent for the complete recovery of 85Sr. Furthermore, the recycling results demonstrated the excellent recyclability of MgMoTi, suggesting its potential application as a sorbent for the removal of 85Sr from aqueous solutions. Overall, the study highlights MgMoTi as a promising composite with practical utility in the sorption of 85Sr from aqueous solutions.
Keywords: (85)Sr; Desorption; MgMoTi; Reaction kinetic; Thermodynamics.
Copyright © 2024 Elsevier Ltd. All rights reserved.