Recent evidence suggests that changes in carbon-degrading extracellular enzyme activities (C-EEAs) can help explain soil organic carbon (SOC) dynamics under nitrogen (N) addition. However, the factors controlling C-EEAs remain unclear, impeding the inclusion of microbial mechanisms in global C cycle models. Using meta-analysis, we show that the responses of C-EEAs to N addition were best explained by mycorrhizal association across a wide range of environmental and experimental factors. In ectomycorrhizal (ECM) dominated ecosystems, N addition suppressed C-EEAs targeting the decomposition of structurally complex macromolecules by 13.1 %, and increased SOC stocks by 5.2 %. In contrast, N addition did not affect C-EEAs and SOC stocks in arbuscular mycorrhizal (AM) dominated ecosystems. Our results indicate that earlier studies may have overestimated SOC changes under N addition in AM-dominated ecosystems and underestimated SOC changes in ECM-dominated ecosystems. Incorporating this mycorrhizal-dependent impact of EEAs on SOC dynamics into Earth system models could improve predictions of SOC dynamics under environmental changes.
Keywords: Free-living decomposers; Mycorrhizal fungi; Nitrogen availability; Soil extracellular enzyme; Soil organic carbon.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.