Utilizing carbon dioxide (CO2) for valuable chemical production is key to a circular economy. Current processes are costly due to limited microorganism use, low-value products, and the need for affordable energy. This study addresses these challenges by using industrial contaminants like thiosulfate (S2O32-) for CO2 conversion into ectoines. Ectoines, are important ingredients as pharmaceuticals and cosmetics. Here, six microbial genomes were identified as potential candidates to valorize CO2 and S2O32- into ectoine. After laboratory validation at 3 % NaCl, the fastest-growing strain, Guyparkeria halophila, was optimized at 6 %, 9 %, and 15 % NaCl, showing the highest specific ectoine contents (mgEct gbiomass-1) at 15 %. Batch bioreactors, combining optimal conditions, achieved maximum specific ectoine contents of 47 %. These results not only constitute the highest ectoine content so far reported by autotrophs and most of heterotrophs, but also the first proof of a novel valorization platform for CO2 and S2O32-, focused on pharmaceuticals production.
Keywords: CO(2) bioconversion; Chemolithoautotrophs; Fine chemicals; Thiosulfate oxidation.
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.