This study investigated host responses to long COVID by following up with 89 of the original 144 cohorts for 1-year (N = 73) and 2-year visits (N = 57). Pulmonary long COVID, characterized by fibrous stripes, was observed in 8.7% and 17.8% of patients at the 1-year and 2-year revisits, respectively, while renal long COVID was present in 15.2% and 23.9% of patients, respectively. Pulmonary and renal long COVID at 1-year revisit was predicted using a machine learning model based on clinical and multi-omics data collected during the first month of the disease with an accuracy of 87.5%. Proteomics revealed that lung fibrous stripes were associated with consistent down-regulation of surfactant-associated protein B in the sera, while renal long COVID could be linked to the inhibition of urinary protein expression. This study provides a longitudinal view of the clinical and molecular landscape of COVID-19 and presents a predictive model for pulmonary and renal long COVID.
Keywords: Clinical finding; Machine learning; Omics; Respiratory medicine.
© 2024 The Authors.