To address the challenges associated with supervising workers who wear safety belts while working at heights, this study proposes a solution involving the utilization of an object detection model to replace manual supervision. A novel object detection model, named ESE-YOLOv8, is introduced. The integration of the Efficient Multi-Scale Attention (EMA) mechanism within this model enhances information entropy through cross-channel interaction and encodes spatial information into the channels, thereby enabling the model to obtain rich and significant information during feature extraction. By employing GSConv to reconstruct the neck into a slim-neck configuration, the computational load of the neck is reduced without the loss of information entropy, allowing the attention mechanism to function more effectively, thereby improving accuracy. During the model training phase, a regression loss function named the Efficient Intersection over Union (EIoU) is employed to further refine the model's object localization capabilities. Experimental results demonstrate that the ESE-YOLOv8 model achieves an average precision of 92.7% at an IoU threshold of 50% and an average precision of 75.7% within the IoU threshold range of 50% to 95%. These results surpass the performance of the baseline model, the widely utilized YOLOv5 and demonstrate competitiveness among state-of-the-art models. Ablation experiments further confirm the effectiveness of the model's enhancements.
Keywords: YOLOv8; attention mechanism; information entropy; object detection; safety belt detection.