Proton therapy reduces the effective dose to immune cells in breast cancer patients

Strahlenther Onkol. 2024 Jul 25. doi: 10.1007/s00066-024-02263-1. Online ahead of print.

Abstract

Background: The effective dose to circulating immune cells (EDIC) is associated with survival in lung and esophageal cancer patients. This study aimed to evaluate the benefit of intensity-modulated proton therapy (IMPT) for EDIC reduction as compared to volumetric modulated arc therapy (VMAT) in patients with locally advanced breast cancer (BC).

Materials and methods: Ten BC patients treated with locoregional VMAT after breast-conserving surgery were included. Mean dose to the heart (MHD), lungs (MLD), and liver (MlD), as well as the integral dose to the body (ITD), were retrieved, and we calculated EDIC as 0.12 × MLD + 0.08 × MHD + 0.15 × 0.85 × √(n/45) × MlD + (0.45 + 0.35 × 0.85 × √(n/45)) × ITD/(62 × 103), where n is the number of fractions. EDIC was compared between VMAT and IMPT plans.

Results: Median EDIC was reduced from 3.37 Gy (range: 2.53-5.99) with VMAT to 2.13 Gy (1.31-3.77) with IMPT (p < 0.01). For left-sided BC patients, EDIC was reduced from 3.15 Gy (2.53-3.78) with VMAT to 1.65 Gy (1.31-3.77) with IMPT (p < 0.01). For right-sided BC patients, EDIC was reduced from 5.60 Gy (5.06-5.99) with VMAT to 3.38 Gy (3.10-3.77) with IMPT (p < 0.01). Right-sided BC patients had a higher EDIC irrespective of the technique. Integral dose reduction was the main driver of EDIC reduction with IMPT and was associated with lung sparing for left-sided BC patients or liver sparing for right-sided BC patients.

Conclusion: IMPT significantly reduced EDIC in BC patients undergoing locoregional adjuvant radiotherapy. Integral total dose reduction, associated with improved lung sparing in left-sided BC patients or liver sparing in right-sided BC patients, mainly drove EDIC reduction with IMPT. The emergence of dynamic models taking into account the circulatory kinetics of immune cells may improve the accuracy of the estimate of the dose received by the immune system compared to calculation of the EDIC, which is based solely on static dosimetric data.

Keywords: Immune system; Intensity-modulated proton therapy; Late effect; Locoregional irradiation; Volumetric modulated arc therapy.