Brain Tumor MRI Classification Using a Novel Deep Residual and Regional CNN

Biomedicines. 2024 Jun 23;12(7):1395. doi: 10.3390/biomedicines12071395.

Abstract

Brain tumor classification is essential for clinical diagnosis and treatment planning. Deep learning models have shown great promise in this task, but they are often challenged by the complex and diverse nature of brain tumors. To address this challenge, we propose a novel deep residual and region-based convolutional neural network (CNN) architecture, called Res-BRNet, for brain tumor classification using magnetic resonance imaging (MRI) scans. Res-BRNet employs a systematic combination of regional and boundary-based operations within modified spatial and residual blocks. The spatial blocks extract homogeneity, heterogeneity, and boundary-related features of brain tumors, while the residual blocks significantly capture local and global texture variations. We evaluated the performance of Res-BRNet on a challenging dataset collected from Kaggle repositories, Br35H, and figshare, containing various tumor categories, including meningioma, glioma, pituitary, and healthy images. Res-BRNet outperformed standard CNN models, achieving excellent accuracy (98.22%), sensitivity (0.9811), F1-score (0.9841), and precision (0.9822). Our results suggest that Res-BRNet is a promising tool for brain tumor classification, with the potential to improve the accuracy and efficiency of clinical diagnosis and treatment planning.

Keywords: brain tumor classification; convolutional neural networks; deep learning; magnetic resonance imaging.

Grants and funding

The funding of the Princess Nourah bint Abdulrahman University Researchers Supporting project number (PNURSP2024R513), Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.