Amazonian Bacteria from River Sediments as a Biocontrol Solution against Ralstonia solanacearum

Microorganisms. 2024 Jul 3;12(7):1364. doi: 10.3390/microorganisms12071364.

Abstract

Bacterial wilt, caused by Ralstonia solanacearum, is one of the main challenges for sustainable tomato production in the Amazon region. This study evaluated the potential of bacteria isolated from sediments of the Solimões and Negro rivers for the biocontrol of this disease. From 36 bacteria selected through in vitro antibiosis, three promising isolates were identified: Priestia aryabhattai RN 11, Streptomyces sp. RN 24, and Kitasatospora sp. SOL 195, which inhibited the growth of the phytopathogen by 100%, 87.62%, and 100%, respectively. These isolates also demonstrated the ability to produce extracellular enzymes and plant growth-promoting compounds, such as indole-3-acetic acid (IAA), siderophore, and ammonia. In plant assays, during both dry and rainy seasons, P. aryabhattai RN 11 reduced disease incidence by 40% and 90%, respectively, while promoting the growth of infected plants. Streptomyces sp. RN 24 and Kitasatospora sp. SOL 195 exhibited high survival rates (85-90%) and pathogen suppression in the soil (>90%), demonstrating their potential as biocontrol agents. This study highlights the potential of Amazonian bacteria as biocontrol agents against bacterial wilt, contributing to the development of sustainable management strategies for this important disease.

Keywords: ANI; actinomycetes; bioactive metabolites; bioprospecting; dDDH; phylogenomic identification.