As an important ROS species participating in various physiological and pathological processes, high level of hypochlorite (ClO-) poses significant health and safety concerns, necessitating efficient detection methods. Herein, this study introduces a water-soluble fluorescent nanoprobe Nano-SJD, effectively detect ClO- in both food samples and living cells. The small molecular probe SJD with N, N-dimethylthiocarbamyl (DMTC) as recognition moiety was constructed based on a naphthalene derivative. To further improve the water solubility, SJD was assembled with an amphiphilic copolymer (mPEG-DSPE) to prepare a water soluble fluorescent nanoprobe Nano-SJD. Fortunately, the nanoprobe preserves the excellent properties of small molecules and performs very well optical response to ClO- in aqueous solution, possessing the advantages including ultra-rapid response (within 1 s), minimal interference, low detection limits (0.39 μM) and good pH stability. What's more important, we have also developed smartphone-compatible test paper strips for convenient on-site detection of ClO- in real-water samples. Additionally, the robust fluorescent imaging behavior of Nano-SJD for visualization of ClO- in living cells highlights its broad potential in biosystem applicability.
Keywords: Environmental analysis; Fluorescent probe; Hypochlorite; On-site detection; Rapidly response; Smartphone-based technique.
Copyright © 2024. Published by Elsevier B.V.