Background: Berberine (BBR), a key component in Kampo medicine, is a cationic benzylisoquinoline alkaloid whose detection plays a critical role in the quality control of these traditional remedies. Traditional methods for detecting BBR often involve complex procedures, which can be time-consuming and costly. To address this challenge, our study focuses on developing a simpler, faster, and more efficient detection method for BBR in Kampo medicine formulations.
Results: We successfully developed a rapid fluorometric detection method for BBR using colloidal gold nanoparticle-based systematic evolution of ligands by exponential enrichment (GOLD-SELEX). Initially, specific single-stranded DNA (ssDNA) sequences were selected for their ability to enhance BBR's fluorescence intensity. The optimal ssDNA sequence, identified as BBR38, was further truncated to produce BBR38S, a stem-loop ssDNA that improved fluorescence upon interaction with BBR. To further enhance the fluorescence, the BBR38S aptamer underwent additional modifications, including stem truncation and nucleotide mutations, resulting in the higher fluorescence variant BBR38S-3 A10C. The final product, TetBBR38S, a tetramer version of BBR38S-3 A10C, exhibited a linear detection range of 0.780-50.0 μg mL-1 and a limit of detection of 0.369 μg mL-1. The assay demonstrated sufficient selectivity and was successfully applied to analyze 128 different Kampo medicine formulations, accurately detecting BBR content with high precision.
Significance: This study represents an advancement in Kampo medicine research, marking the first successful application of an aptamer-based approach for BBR detection in complex matrices. The developed method is not only simple and rapid (with a detection time of 5 min) but also cost-effective, which is crucial for widespread application.
Keywords: Aptamer; Berberine; GOLD-SELEX; Label-free detection; Traditional Japanese medicine.
Copyright © 2024 Elsevier B.V. All rights reserved.