Introduction: Protonitazene is an opioid belonging to the 2-benzylbenzimidazole structural class. We describe two cases of opioid toxicity involving the reported inhalation of a delta-9-tetrahydrocannabinol vape product in which protonitazene was detected.
Case reports: Case 1 was a young male found unconscious after the reported use of a delta-9-tetrahydrocannabinol vape. He suffered two subsequent apnoeic episodes requiring bag-valve-mask ventilation before eventual recovery. Only protonitazene was detected in blood at a concentration of 0.74 µg/L. Case 2 was a young male who died shortly after being found unresponsive. The postmortem femoral blood concentrations of protonitazene and delta-9-tetrahydrocannabinol were 0.33 µg/L and 2 µg/L, respectively. Analysis of a pod vaping device found in the decedent's hand and a separate e-liquid bottle labelled as delta-9-tetrahydrocannabinol showed a mixture of protonitazene and delta-9-tetrahydrocannabinol.
Discussion: The opioid effects of protonitazene are mediated through β-arrestin2 and mu opioid receptor signalling pathways. Benzimidazole opioids are lipophilic and, when mixed with a suitable solvent, can be used in a vape device. It is anticipated that naloxone would have provided effective reversal of toxicity in our cases.
Conclusions: Novel routes of opioid administration, like vaping, may appear relatively innocuous in comparison to intravenous administration, but opioids may still be absorbed at high concentrations, resulting in severe opioid toxicity or death.
Keywords: Early warning system; NPS; novel synthetic opioids; protonitazene; toxicosurveillance.