Context: Hyperinsulinemic hypoglycemia (HI) can be the presenting feature of Kabuki syndrome (KS), which is caused by loss-of-function variants in KMT2D or KDM6A. As these genes play a critical role in maintaining methylation status in chromatin, individuals with pathogenic variants have a disease-specific epigenomic profile -an episignature.
Objective: We evaluated the pathogenicity of three novel partial KDM6A duplications identified in three individuals presenting with neonatal-onset HI without typical features of KS at the time of genetic testing.
Methods: Three different partial KDM6A duplications were identified by routine targeted next generation sequencing for HI and initially classified as variants of uncertain significance (VUS) as their location, and hence their impact on the gene, was not known. Whole genome sequencing (WGS) was undertaken to map the breakpoints of the duplications with DNA methylation profiling performed in two individuals to investigate the presence of a KS-specific episignature.
Results: WGS confirmed the duplication in proband 1 as pathogenic as it caused a frameshift in the normal copy of the gene leading to a premature termination codon. The duplications identified in probands 2 and 3 did not alter the reading frame and therefore their significance remained uncertain after WGS. Subsequent DNA methylation profiling identified a KS-specific episignature in proband 2 but not in proband 3.
Conclusions: Our findings confirm a role for KDM6A partial gene duplications in the etiology of KS and highlight the importance of performing in-depth molecular genetic analysis to properly assess the clinical significance of VUS's in the KDM6A gene.
Keywords: KDM6A; DNA methylation; Kabuki syndrome; congenital hyperinsulinism; episignature; whole genome sequencing.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Endocrine Society.