Ovarian cancer, the fifth leading cause of cancer-related mortality in women, is the most lethal gynecological malignancy globally. Within various ovarian cancer subtypes, high-grade serous ovarian cancer is the most prevalent and there is frequent emergence of chemoresistance. Aulosirazole, an isothiazolonaphthoquinone alkaloid, isolated from the cyanobacterium Nostoc sp. UIC 10771, demonstrated cytotoxic activity against OVCAR3 cells (IC50 = 301 ± 80 nM). Using immunocytochemistry, OVCAR3 cells treated with aulosirazole demonstrated increased concentrations of phosphorylated protein kinase B and phosphorylated c-Jun N-terminal kinase with subsequent accumulation of forkhead box O3a (FOXO3a) in the nucleus. The combination of aulosirazole with protein kinase B inhibitors resulted in the most nuclear accumulation of FOXO3a aulosirazole-induced apoptosis based on cleavage of poly(ADP-ribose) polymerase, annexin V staining, and induction of caspase 3/7 activity in OVCAR3, OVCAR5, and OVCAR8. The expression of downstream targets of FOXO3a, including B-cell lymphoma 2 (BCL2) and p53-upregulator modulator of apoptosis, increased following aulosirazole treatment. Aulosirazole upregulated the FOXO3a target, cyclin-dependent kinase inhibitor 1, and increased cell-cycle arrest in the G0/G1 phase. The downregulation of FOXO3a by short hairpin RNA (shRNA) reduced the cytotoxicity after aulosirazole treatment by 3-fold IC50 (949 ± 16 nM) and eliminated its ability to regulate downstream targets of FOXO3a. These findings underscore FOXO3a as a critical mediator of aulosirazole-induced cytotoxicity. Additionally, aulosirazole was able to decrease migration and invasion while increasing cell death in 3D tumor spheroids. However, in vivo OVCAR8 tumor burden was not reduced by aulosirazole using an intraperitoneal tumor model. Given the mechanism of action of aulosirazole, this class of alkaloids represents promising lead compounds to develop treatments against FOXO3a-downregulated cancers. SIGNIFICANCE STATEMENT: Aulosirazole, an isothiazolonaphthoquinone alkaloid, exhibits potent cytotoxic effects against high-grade serous ovarian cancer by promoting forkhead box O3a (FOXO3a) nuclear accumulation and modulating downstream targets. These findings highlight the potential of aulosirazole as a promising therapeutic intervention for cancers characterized by FOXO3a downregulation.
Copyright © 2024 by The American Society for Pharmacology and Experimental Therapeutics.