Specific and Plastic: Chandelier Cell-to-Axon Initial Segment Connections in Shaping Functional Cortical Network

Neurosci Bull. 2024 Nov;40(11):1774-1788. doi: 10.1007/s12264-024-01266-3. Epub 2024 Jul 30.

Abstract

Axon initial segment (AIS) is the most excitable subcellular domain of a neuron for action potential initiation. AISs of cortical projection neurons (PNs) receive GABAergic synaptic inputs primarily from chandelier cells (ChCs), which are believed to regulate action potential generation and modulate neuronal excitability. As individual ChCs often innervate hundreds of PNs, they may alter the activity of PN ensembles and even impact the entire neural network. During postnatal development or in response to changes in network activity, the AISs and axo-axonic synapses undergo dynamic structural and functional changes that underlie the wiring, refinement, and adaptation of cortical microcircuits. Here we briefly introduce the history of ChCs and review recent research advances employing modern genetic and molecular tools. Special attention will be attributed to the plasticity of the AIS and the ChC-PN connections, which play a pivotal role in shaping the dynamic network under both physiological and pathological conditions.

Keywords: Axon initial segment; Chandelier cell; Plasticity.

Publication types

  • Review

MeSH terms

  • Animals
  • Axons* / physiology
  • Cerebral Cortex* / cytology
  • Cerebral Cortex* / physiology
  • GABAergic Neurons / physiology
  • Humans
  • Nerve Net* / physiology
  • Neuronal Plasticity* / physiology
  • Synapses / physiology