Prostate cancer diagnosis and treatment relies on precise MRI lesion segmentation, a challenge notably for small (<15 mm) and intermediate (15-30 mm) lesions. Our study introduces ProLesA-Net, a multi-channel 3D deep-learning architecture with multi-scale squeeze and excitation and attention gate mechanisms. Tested against six models across two datasets, ProLesA-Net significantly outperformed in key metrics: Dice score increased by 2.2%, and Hausdorff distance and average surface distance improved by 0.5 mm, with recall and precision also undergoing enhancements. Specifically, for lesions under 15 mm, our model showed a notable increase in five key metrics. In summary, ProLesA-Net consistently ranked at the top, demonstrating enhanced performance and stability. This advancement addresses crucial challenges in prostate lesion segmentation, enhancing clinical decision making and expediting treatment processes.
Keywords: cancer detection; deep learning; magnetic resonance imaging; medical imaging; multi-scale attention; prostate lesion segmentation.
© 2024 The Authors.