Kinetics of SARS-CoV-2 antibody titers after booster vaccinations during an Omicron surge in Japan

Vaccine. 2024 Aug 30;42(21):126156. doi: 10.1016/j.vaccine.2024.126156. Epub 2024 Jul 31.

Abstract

Background: Despite the emergence of SARS-CoV-2 variants and waning immunity after initial vaccination, data on antibody kinetics following booster doses, particularly those adapted to Omicron subvariants like XBB.1.5, remain limited. This study assesses the kinetics of anti-spike protein receptor-binding domain (S-RBD) IgG antibody titers post-booster vaccination in a Japanese population during the Omicron variant epidemic.

Methods: A prospective cohort study was conducted in Bizen City, Japan, from November 2023 to January 2024. Participants included residents and workers aged ≥18 years, with at least three COVID-19 vaccinations. Antibody levels were measured from venous blood samples. The study analyzed 424 participants and 821 antibody measurements, adjusting for variables such as age, sex, underlying conditions, and prior infection status. Mixed-effects models were employed to describe the kinetics of log-transformed S-RBD antibody titers.

Results: The study found that S-RBD antibody titers declined over time but increased with the number of booster vaccinations, particularly those adapted to Omicron and its subvariant XBB.1.5 (Pfizer-BioNTech Omicron-compatible: 0.156, 95%CI -0.032 to 0.344; Pfizer-BioNTech XBB-compatible: 0.226; 95%CI -0.051 to 0.504; Moderna Omicron-compatible: 0.279, 95%CI 0.012 to 0.546; and Moderna XBB-compatible: 0.338, 95%CI -0.052 to 0.728). Previously infected individuals maintained higher antibody titers, which declined more gradually compared to uninfected individuals (coefficient for interaction with time 0.006; 95%CI 0.001 to 0.011). Sensitivity analyses using Generalized Estimating Equations and interval-censored random intercept model confirmed the robustness of these findings.

Conclusions: The study provides specific data on antibody kinetics post-booster vaccination, including the XBB.1.5-adapted vaccine, in a highly vaccinated Japanese population. The results highlight the importance of considering individual demographics and prior infection history in optimizing vaccination strategies.

Keywords: Antibody; Mixed-effects model; Omicron; SARS-CoV-2; Vaccine.

MeSH terms

  • Adult
  • Aged
  • Antibodies, Viral* / blood
  • Antibodies, Viral* / immunology
  • COVID-19 Vaccines* / administration & dosage
  • COVID-19 Vaccines* / immunology
  • COVID-19* / epidemiology
  • COVID-19* / immunology
  • COVID-19* / prevention & control
  • Female
  • Humans
  • Immunization, Secondary*
  • Immunoglobulin G / blood
  • Immunoglobulin G / immunology
  • Japan / epidemiology
  • Kinetics
  • Male
  • Middle Aged
  • Prospective Studies
  • SARS-CoV-2* / immunology
  • Spike Glycoprotein, Coronavirus / immunology
  • Vaccination
  • Young Adult

Substances

  • Antibodies, Viral
  • COVID-19 Vaccines
  • Immunoglobulin G
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2

Supplementary concepts

  • SARS-CoV-2 variants