Background: Self-renewal of glioma stem cells (GSCs) is responsible for glioblastoma (GBM) therapy resistance and recurrence. Tumor necrosis factor α (TNFα) and TNF signaling pathway display an antitumor activity in preclinical models and in tumor patients. However, TNFα exhibits no significance for glioma clinical prognosis based on the Glioma Genome Atlas database. This study aimed to explore whether TNFα of tumor microenvironment maintains self-renewal of GSCs and promotes worse prognosis in glioma patients.
Methods: Spatial transcriptomics, immunoblotting, sphere formation assay, extreme limiting dilution, and gene expression analysis were used to determine the role of TNFα on GSC's self-renewal. Mass spectrometry, RNA-sequencing detection, bioinformatic analyses, qRT-RNA, immunofluorescence, immunohistochemistry, single-cell RNA sequencing, in vitro and in vivo models were used to uncover the mechanism of TNFα-induced GSC self-renewal.
Results: A low level of TNFα displays a promoting effect on GSC self-renewal and worse glioma prognosis. Mechanistically, Vasorin (VASN) mediated TNFα-induced self-renewal by potentiating glycolysis. Lactate produced by glycolysis inhibits the TNFα secretion of tumor-associated macrophages (TAMs) and maintains TNFα at a low level.
Conclusions: TNFα-induced GSC self-renewal mediated by VASN provides a possible explanation for the failures of endogenous TNFα effect on GBM. A combination of targeting VASN and TNFα antitumor effect may be an effective approach for treating GBM.
Keywords: glioma stem cell; glycolysis; tumor necrosis factor α; tumor-associated macrophages.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].