Candidate for a Passively Protected Quantum Memory in Two Dimensions

Phys Rev Lett. 2024 Jul 19;133(3):030601. doi: 10.1103/PhysRevLett.133.030601.

Abstract

An interesting problem in the field of quantum error correction involves finding a physical system that hosts a "passively protected quantum memory," defined as an encoded qubit coupled to an environment that naturally wants to correct errors. To date, a quantum memory stable against finite-temperature effects is known only in four spatial dimensions or higher. Here, we take a different approach to realize a stable quantum memory by relying on a driven-dissipative environment. We propose a new model, the photonic-Ising model, which appears to passively correct against both bit-flip and phase-flip errors in two dimensions: a square lattice composed of photonic "cat qubits" coupled via dissipative terms which tend to fix errors locally. Inspired by the presence of two distinct Z_{2}-symmetry-broken phases, our scheme relies on Ising-like dissipators to protect against bit flips and on a driven-dissipative photonic environment to protect against phase flips. We also discuss possible ways to realize the photonic-Ising model.