Trends in extracting protein from microalgae Spirulina platensis, using innovative extraction techniques: mechanisms, potentials, and limitations

Crit Rev Food Sci Nutr. 2024 Aug 3:1-17. doi: 10.1080/10408398.2024.2386448. Online ahead of print.

Abstract

Microalgal, species are recognized for their high protein content, positioning them as a promising source of this macronutrient. Spirulina platensis, in particular, is noteworthy for its rich protein levels (70 g/100 g dw), which are higher than those of meat and legumes. Incorporating this microalgae into food can provide various benefits to human health due to its diverse chemical composition, encompassing high amount of protein and elevated levels of minerals, phenolics, essential fatty acids, and pigments. Conventional techniques employed for protein extraction from S. platensis have several drawbacks, prompting the exploration of innovative extraction techniques (IETs) to overcome these limitations. Recent advancements in extraction methods include ultrasound-assisted extraction, microwave-assisted extraction, high-pressure-assisted extraction, supercritical fluid extraction, pulse-electric field assisted extraction, ionic liquids assisted extraction, and pressurized liquid extraction. These IETs have demonstrated efficiency in enhancing protein yield of high quality while maximizing biomass utilization. This comprehensive review delves into the mechanisms, applications, and drawbacks associated with implementing IETs in protein extraction from S. platensis. Notably, these innovative methods offer advantages such as increased extractability, minimized protein denaturation, reduced solvent consumption, and lower energy consumption. However, safety considerations and the synergistic effects of combined extraction methods warrant further exploration and investigation of their underlying mechanisms.

Keywords: Conventional techniques; Spirulina; novel extraction techniques; protein alternates; protein extraction.

Publication types

  • Review