A High Capacity Gas Diffusion Electrode for Li-O2 Batteries

Adv Mater. 2024 Oct;36(41):e2405715. doi: 10.1002/adma.202405715. Epub 2024 Aug 5.

Abstract

The very high theoretical specific energy of the lithium-air (Li-O2) battery (3500 Wh kg-1) compared with other batteries makes it potentially attractive, especially for the electrification of flight. While progress has been made in realizing the Li-air battery, several challenges remain. One such challenge is achieving a high capacity to store charge at the positive electrode at practical current densities, without which Li-air batteries will not outperform lithium-ion. The capacity is limited by the mass transport of O2 throughout the porous carbon positive electrode. Here it is shown that by replacing the binder in the electrode by a polymer with the intrinsic ability to transport O2, it is possible to reach capacities as high as 31 mAh cm-2 at 1 mA cm-2 in a 300 µm thick electrode. This corresponds to a positive electrode energy density of 2650 Wh L-1 and specific energy of 1716 Wh kg-1, exceeding significantly Li-ion batteries and previously reported Li-O2 cells. Due to the enhanced oxygen diffusion imparted by the gas diffusion polymer, Li2O2 (the product of O2 reduction on discharge) fills a greater volume fraction of the electrode and is more homogeneously distributed.

Keywords: gas diffusion electrode; high energy density; lithium‐oxygen battery.