Engineering a NanoBiT biosensor for detecting angiotensin-converting enzyme-2 (hACE2) interaction with SARS-CoV-2 spike protein and screening the inhibitors to block hACE2 and spike interaction

Biosens Bioelectron. 2024 Nov 1:263:116630. doi: 10.1016/j.bios.2024.116630. Epub 2024 Aug 3.

Abstract

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is facilitated by its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme 2 (hACE2) receptor. This critical interaction facilitates viral entry and is a primary target for therapeutic intervention against COVID-19. However, it is difficult to fully optimize viral infection using existing protein-protein interaction methods. Herein, we introduce a nano-luciferase binary technology (NanoBiT)-based pseudoviral sensor designed to stimulate the dynamics of viral infection in both living cells and animals. Infection progression can be dynamically visualized via a rapid increase in luminescence within 3 h using an in vivo imaging system (IVIS). Inhibition of viral infection by baicalein and baicalin was evaluated using a NanoBiT-based pseudoviral sensor. These results indicate that the inhibitory efficacy of baicalein was strengthened by targeting the spike protein, whereas baicalin targeted the hACE2 protein. Additionally, under optimized conditions, baicalein and baicalin provided a synergistic combination to inhibit pseudoviral infection. Live bioluminescence imaging was used to evaluate the in vivo effects of baicalein and baicalin treatment on LgBiT-hACE2 mice infected with the BA.2-SmBiT spike pseudovirus. This innovative bioluminescent system functions as a sensitive and early-stage quantitative viral transduction in vitro and in vivo. This platform provides novel opportunities for studying the molecular biology of animal models.

Keywords: Angiotensin-converting enzyme type II; Nanoluciferase binary technology; Pseudovirus; Severe acute respiratory syndrome coronavirus 2; Spike protein.

MeSH terms

  • Angiotensin-Converting Enzyme 2* / chemistry
  • Angiotensin-Converting Enzyme 2* / metabolism
  • Animals
  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacology
  • Biosensing Techniques* / methods
  • COVID-19 Drug Treatment
  • COVID-19* / virology
  • Flavanones* / chemistry
  • Flavanones* / pharmacology
  • Flavonoids* / chemistry
  • Flavonoids* / pharmacology
  • HEK293 Cells
  • Humans
  • Mice
  • SARS-CoV-2* / drug effects
  • Spike Glycoprotein, Coronavirus* / chemistry
  • Spike Glycoprotein, Coronavirus* / metabolism

Substances

  • Angiotensin-Converting Enzyme 2
  • Spike Glycoprotein, Coronavirus
  • baicalein
  • baicalin
  • spike protein, SARS-CoV-2
  • Flavonoids
  • Flavanones
  • ACE2 protein, human
  • Antiviral Agents