Liver fibrosis, one of the leading causes of morbidity and mortality worldwide, lacks effective therapy. The activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. Luteolin-7-diglucuronide (L7DG) is the major flavonoid extracted from Perilla frutescens and Verbena officinalis. Their beneficial effects in the treatment of liver diseases were well documented. In this study we investigated the anti-fibrotic activities of L7DG and the potential mechanisms. We established TGF-β1-activated mouse primary hepatic stellate cells (pHSCs) and human HSC line LX-2 as in vitro liver fibrosis models. Co-treatment with L7DG (5, 20, 50 μM) dose-dependently decreased TGF-β1-induced expression of fibrotic markers collagen 1, α-SMA and fibronectin. In liver fibrosis mouse models induced by CCl4 challenge alone or in combination with HFHC diet, administration of L7DG (40, 150 mg·kg-1·d-1, i.g., for 4 or 8 weeks) dose-dependently attenuated hepatic histopathological injury and collagen accumulation, decreased expression of fibrogenic genes. By conducting target prediction, molecular docking and enzyme activity detection, we identified L7DG as a potent inhibitor of protein tyrosine phosphatase 1B (PTP1B) with an IC50 value of 2.10 µM. Further studies revealed that L7DG inhibited PTP1B activity, up-regulated AMPK phosphorylation and subsequently inhibited HSC activation. This study demonstrates that the phytochemical L7DG may be a potential therapeutic candidate for the treatment of liver fibrosis.
Keywords: HSC activation; PTP1B; liver fibrosis; luteolin 7-diglucuronide; phytochemical.
© 2024. The Author(s), under exclusive licence to Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Chinese Pharmacological Society.