The performance of dairy cows is influenced by the microbial communities hosted within their digestive tract. While the rumen microbiota has long been associated with host phenotypes, the impact of the faecal microbiota remains elusive. In this study, we collected 697 faecal samples from commercial Holstein cows and analysed them with 16S rRNA gene analyses. For each animal, routinely recorded data, i.e., milk yield, fat yield, protein yield, fat content, protein content, and an aggregate production trait (pINEL) based on the French economic dairy index, were available to assess the links between the faecal microbiota and host production. Our findings revealed a strong and significant association between the structure of the bacterial and prokaryote community (β-diversity) and dairy production. In addition, differential abundance analyses identified 48 genera whose abundances were significantly associated with pINEL, milk, fat and protein yield. Among these genera, the increased abundance of Bifidobacterium, and particularly an amplicon sequence variant with a 16S rRNA V3-V4 gene region identical to B. globosum and B. pseudolongum, was found to be the most important for high-yielding animals. Bifidobacterium seemed to be a potential key member of the bovine faecal microbiota that should be further investigated. Conversely, the p-1088-a5 gut group genus was found more abundant in low-productive cows. In conclusion, this study demonstrates significant associations between the faecal microbiota and the performance of dairy cows at the whole lactation scale. A better understanding of the physiology of the gut microbiota could help to improve dairy cow production.
Keywords: 16S rRNA gene; Dairy performance; Differential abundance analysis; Diversity; Holstein cows.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.