Elimination patterns of dimetridazole in egg of laying hens and tissues of broiler after oral administration

Front Vet Sci. 2024 Jul 23:11:1451904. doi: 10.3389/fvets.2024.1451904. eCollection 2024.

Abstract

Dimetridazole (DMZ) is a broad-spectrum anti-anaerobic and antiprotozoal drug extensively used for the control of blackhead disease in poultry (especially turkeys). The presence of DMZ and its metabolites in animal food poses potential risks to human health. In this study, we developed a high-performance liquid chromatography tandem mass spectrometry (HPLC/MS-MS) method for the precise detection of DMZ and its metabolite 2-hydroxymethyl-1-methyl-5-nitroimidazole (HMMNI). Our results demonstrate a strong linear relationship (r2 > 0.99) between the concentrations of DMZ and HMMNI in tissues and egg within the range of 1~100 ng/g. The limits of detection (LOD) were determined to be 0.5 ng/g, with corresponding limits of quantification (LOQ) at 1.0 ng/g. Furthermore, average recoveries in tissues and egg fell within the range of 84.90% to 103.01%, with coefficients of variation below 15% for both intra-day and inter-day analyses. To investigate the residue elimination pattern of DMZ and HMMNI, diets containing 500 mg/kg DMZ were fed to healthy SanHuang chicken and Hy-line Gray laying hens for 10 consecutive days. The results indicated that the concentration of HMMNI consistently exceeded that of DMZ during the same period, in both broiler tissues and egg. Sebum showed the slowest elimination of DMZ and HMMNI, becoming undetectable after 168 h of withdrawal. In egg, residues of both substances peaked on the first day after drug withdrawal, followed by slow elimination with half-lives of 0.45 days for DMZ and 0.66 days for HMMNI. Based on these findings, WT1.4 software was used to calculate a withdrawal time of 11 days for broilers and an egg abandonment period of 14 days after withdrawal for laying hens, providing a scientific basis for the safe and rational use of DMZ in poultry farming.

Keywords: HPLC-MS/MS; broiler; dimetridazole; laying hens; residue elimination.

Grants and funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work was supported by the National Key Research and Development Program of China (grant numbers 2023YFD1800904 and 2023YFD1800900).