Objectives: Dermatomyositis (DM) is a rare type I interferon (IFN-I)-driven autoimmune disease, and anti-nuclear matrix protein 2 (NXP2) antibody is related to severe muscle disease and poor prognosis. Circulating cell-free DNA (ccf-DNA), including ccf-mitochondrial DNA and ccf-nuclear DNA, activates cGAS/STING pathway to induce IFN-I production in autoimmune diseases. We investigated whether serum-derived ccf-DNA played a pathogenic role on skeletal muscle in anti-NXP2 antibody-positive DM.
Methods: Serum ccf-DNA levels were measured, and correlations between ccf-DNA and clinicopathological indicators were performed. RNA sequencing, immunofluorescence, western blotting and RT-qPCR were performed on skeletal muscle samples. The serum-induced expression of p-STING in C2C12 cells was assessed in vitro.
Results: We found that increased ccf-DNA levels were positively correlated with MYOACT scores in anti-NXP2 antibody-positive DM. RNA sequencing and immunofluorescence results revealed that the cytosolic DNA-sensing pathway was upregulated and that increased cytosolic dsDNA was colocalised with cGAS in skeletal muscle in anti-NXP2 antibody-positive DM. Western blot analysis revealed activation of the cGAS/STING pathway in patients with perifascicular atrophy (PFA) but not in patients without PFA. RT-qPCR showed increased IFN-I scores in both patients with PFA and patients without PFA. Sera from patients with PFA increased p-STING expression in C2C12 cells, and DNase I treatment and STING inhibitor efficiently inhibited p-STING expression, respectively.
Conclusions: Increased ccf-DNA levels may be potential biomarkers for monitoring disease activity in anti-NXP2 antibody-positive DM. Activation of the cGAS/STING pathway is associated with PFA. Our findings identify the pathogenic role of ccf-DNA on skeletal muscle via the cGAS/STING pathway.
Keywords: anti-nuclear matrix protein 2 antibody; cGAS/STING pathway; circulating cell-free DNA; dermatomyositis.
© The Author(s) 2024. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For permissions, please email: [email protected].