The past decade has witnessed a significant evolution in the role of the Internet, transitioning from individual connectivity to an integral aspect of various domains. This shift has prompted a move in IP paradigms from hierarchical to distributed architectures characterized by decentralized structures. This transition empowers efficient data routing and management across diverse networks. However, traditional distributed mobility management (DMM) protocols, reliant on tunneling mechanisms, incur overheads, costs, and delays, exacerbating challenges in managing the exponential growth of mobile data traffic. This research proposes Tunnel-Free Mobility for IPv6 (TFMIPv6) as a solution to address the shortcomings of existing DMM protocols. TFMIPv6 eliminates the need for tunneling, simplifying routing processes and reducing latency. A comprehensive cost analysis and performance evaluation are conducted, comparing TFMIPv6 with traditional protocols such as MIPv6, PMIPv6, FMIPv6, and HMIPv6. The study reveals significant improvements with TFMIPv6. Signaling costs are reduced by 50%, packet delivery costs by 23%, and tunneling costs are completely eliminated (100%). Real-world network traffic datasets are used for simulation, providing statistical evidence of TFMIPv6's efficacy in supporting an uninterrupted movement of IPv6 data across networks.
Copyright: © 2024 Aman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.