Chitosan has established itself as a multifunctional and auspicious biomaterial within the domain of tissue engineering, presenting a decade of uninterrupted advancements and novel implementations. This article provides a comprehensive overview of the most recent developments in chitosan-based tissue engineering, focusing on significant progress made in the last ten years. An exploration is conducted of the various techniques utilized in the modification of chitosan and the production of scaffolds, with an analysis of their effects on cellular reactions and tissue regeneration. The investigation focuses on the integration of chitosan with other biomaterials and the addition of bioactive agents to improve their functionalities. Upon careful analysis of the in vitro and in vivo research, it becomes evident that chitosan effectively stimulates cell adhesion, proliferation, and differentiation. Furthermore, we offer valuable perspectives on the dynamic realm of chitosan-based approaches tailored to distinct tissue categories, including nerve, bone, cartilage, and skin. The review concludes with a discussion of prospective developments, with particular attention given to possible directions for additional study, translational implementations, and the utilization of chitosan to tackle existing obstacles in the field of tissue engineering. This extensive examination provides a significant amalgamation of the advancements achieved over the previous decade and directs scholars towards uncharted territories in chitosan-based tissue engineering.
Keywords: Biocompatibility; Biodegradability; Biomimetic; Chitosan; Composite materials; Drug delivery; Regenerative medicine; Scaffold; Tissue engineering; Wound healing.
Copyright © 2024 Elsevier B.V. All rights reserved.