Enhanced Electrocatalysis on Copper Nanostructures: Role of the Oxidation State in Sulfite Oxidation

ACS Catal. 2024 Jul 19;14(15):11522-11531. doi: 10.1021/acscatal.3c05897. eCollection 2024 Aug 2.

Abstract

The influence of surface morphology and the oxidation state on the electrocatalytic activity of nanostructured electrodes is well recognized, yet disentangling their individual roles in specific reactions remains challenging. Here, we investigated the electrooxidation of sulfite ions in an alkaline environment using cyclic voltammetry on copper oxide nanostructured electrodes with different oxidation states and morphologies but with similar active areas. To this aim, we synthesized nanostructured Cu films made of nanoparticles or nanorods on top of glassy carbon electrodes. Our findings showed an enhanced sensitivity and a lower detection threshold when utilizing Cu(I) over Cu(II). Density functional theory-based thermochemical analysis revealed the underlying oxidation mechanism, indicating that while the energy gain associated with the process is comparable for both oxide surfaces, the desorption energy barrier for the resulting sulfate molecules is three times higher on Cu(II). This becomes the limiting step of the reaction kinetics and diminishes the overall electrooxidation efficiency. Our proposed mechanism relies on the tautomerization of hydroxyl groups confined on the surface of Cu-based electrodes. This mechanism might be applicable to electrochemical reactions involving other sulfur compounds that hold technological significance.