Aim: Hyperhomocysteine has been recognized as an independent risk factor of multiple diseases, including several eye diseases. In this study, we aim to investigate whether increased homocysteine (Hcy) is related to cataracts, and to explore whether dysregulation of mTOR-mediated autophagy and connexin expression are underlying mechanisms.
Method: We first developed a method of liquid chromatography tandem mass spectrometry to accurately measure serum concentrations of Hcy in 287 cataract patients and 334 healthy controls. Next, we treated human lens epithelial (HLC-B3) cells with Hcy at different concentrations and durations, and then analyzed expression of autophagy-related markers and connexins, as well as phosphorylated mTOR (p-mTOR) in these cells by Western blotting. Formation of autophagic vacuoles and intracellular Ca2+ in the Hcy-treated cells were observed by fluorescence microscopy. Further, we performed a rescue experiment in the Hcy-treated HLC-B3 cells by pre-incubation with rapamycin, an mTOR inhibitor.
Results: The serum levels of Hcy in patients with cataracts were significantly increased compared to those in healthy controls. In cultured HLC-B3 cells, expression of autophagy related markers (LC3B and Beclin1) and connexins (Cx43 and Cx50) was inhibited by Hcy treatment in a dose- and duration-dependent manner. Accumulation of Ca2+ in the Hcy-treated lens epithelial cells was observed as a consequence of reduced connexin expression. Meanwhile, expression of p-mTOR increased, representing up-regulation of the mTOR pathway. Importantly, inhibition of autophagy and connexin expression due to hyperhomocysteine was rescued via mTOR suppression by pretreatment with rapamycin in HLC-B3 cells.
Conclusion: Our results demonstrate that hyperhomocysteine might promote cataract development through two mTOR-mediated pathways in the lens epithelial cells: 1) dysregulation of autophagy and 2) accumulation of intracellular calcium via decreased connexin expression.
Keywords: Autophagy; Cataract; Connexin; Homocysteine; mTOR.
Copyright © 2024. Published by Elsevier B.V.