CircRNA, an essential RNA molecule involved in various biological functions and diseases, often exhibits decreased expression in tumor tissues, playing a role as a tumor suppressor, and suggesting therapeutic potential for cancer. However, current methods for promoting circRNA production are limited. This study introduces a novel approach for enhancing circRNA biogenesis, termed circRNA promoting RNA (cpRNA). CpRNA is designed to complement the flanking sequences of reverse complementary matches (RCMs) within pre-mRNA, thereby facilitating circRNA formation through improved exon circularization. Using a split-GFP reporter system, we demonstrated that cpRNA significantly enhance circGFP production. Optimization identified the best conditions for cpRNA to promote circRNA biogenesis, and these cpRNAs were then used to augment the production of endogenous circRNAs. These results indicate that cpRNAs can specifically increase the production of endogenous circRNAs with RCMs, such as circZKSCAN1 and circSMARCA5 in cancer cells, thereby inhibiting cell proliferation and migration by modulating circRNA-related pathways, showcasing the therapeutic potential of cpRNAs. Mechanistic studies have also shown that cpRNA promotes circRNA biogenesis, in part, by antagonizing the unwinding function of DHX9. Overall, these findings suggest that cpRNA represents a promising strategy for circRNA overexpression, offering a potential treatment for diseases marked by low circRNA levels.
© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.