This study introduces a lightweight storage system for wearable devices, aiming to optimize energy efficiency in long-term and continuous monitoring applications. Utilizing Direct Memory Access and the Serial Peripheral Interface protocol, the system ensures efficient data transfer, significantly reduces energy consumption, and enhances the device autonomy. Data organization into Time Block Data (TBD) units, rather than files, significantly diminishes control overhead, facilitating the streamlined management of periodic data recordings in wearable devices. A comparative analysis revealed marked improvements in energy efficiency and write speed over existing file systems, validating the proposed system as an effective solution for boosting wearable device performance in health monitoring and various long-term data acquisition scenarios.
Keywords: DMA controller; continuous monitoring; embedded storage management; long-term monitoring; ultra-low power data storage; wearable devices.