The widespread presence and use of Bisphenol A (BPA) in aquatic environments has caused significant ecological damage. Coal gangue (CG), a byproduct of coal mining, poses a major environmental concern due to its vast land occupation and potential for pollution. A magnetic recyclable geopolymer (MnFe2O4-CGP) using coal gangue geopolymer (CGP) as the carrier was successfully synthesized and was evaluated for its ability to Fenton-like degrade BPA. The characterization techniques revealed the successful incorporation of spherical MnFe2O4 onto the CGP surface and that CGP serves as an excellent platform for the immobilization and dispersion of MnFe2O4. The degradation rate reached 100% within 60 min at pH = 5, 15 mmol/L H2O2, 0.6 g/L catalyst, and 50 mg/L BPA, significantly higher than MnFe2O4 and CGP alone. It was indicated that the degradation rate of BPA in MnFe2O4-CGP composites was 0.1121 min-1, which was consistent with the first-order kinetic model. The saturation magnetization of MnFe2O4-CGP was measured to be 10.96 emu/g, enabling convenient recovery. MnFe2O4-CGP exhibited excellent stability, as the degradation rate of BPA remained above 95% even after five reaction cycles. This efficiency may be due to the MnFe2O4-CGP induced generation of reactive radicals. Quenching and EPR radical trapping experiments unequivocally confirmed that the reactive radical was hydroxyl radical (•OH). These results indicate that MnFe2O4-CGP has potential application prospects as a magnetic recyclable geopolymer composite in Fenton-like catalysis.
Keywords: Bisphenol A; MnFe2O4; advanced oxidation processes; coal gangue geopolymer; hydroxyl radical.