Various copper-related defects in the absorption layer have been a key factor impeding the enhancement of the efficiency of Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. Alkali metal doping is considered to be a good strategy to ameliorate this problem. In this article, Rb-doped CZTSSe (RCZTSSe) thin films were synthesized using the sol-gel technique. The results show that the Rb atom could successfully enter into the CZTSSe lattice and replace the Cu atom. According to SEM results, a moderate amount of Rb doping aided in enhancing the growth of grains in CZTSSe thin films. It was proven that the RCZTSSe thin film had the densest surface morphology and the fewest holes when the doping content of Rb was 2%. In addition, Rb doping successfully inhibited the formation of CuZn defects and correlative defect clusters and promoted the electrical properties of RCZTSSe thin films. Finally, a remarkable power conversion efficiency of 7.32% was attained by the champion RCZTSSe device with a Rb content of 2%. Compared with that of un-doped CZTSSe, the efficiency improved by over 30%. This study offers new insights into the influence of alkali metal doping on suppressing copper-related defects and also presents a viable approach for improving the efficiency of CZTSSe devices.
Keywords: CZTSSe films; Rb doping; photoelectric properties; solar cells; sol–gel.