Primary focal segmental glomerulosclerosis (FSGS) is a disease of the podocytes and glomerulus, leading to nephrotic syndrome and progressive loss of renal function. One of the most serious aspects is its recurrence of disease in over 30% of patients following allogeneic kidney transplantation, leading to early graft loss. This research investigates the individual genetic predispositions and differences in the immune responses leading to recurrence of FSGS after transplantation. We performed exome sequencing on six patients with recurrent FSGS to identify variants in fifty-one genes and found significant variations in the alpha-2-macroglobulin (A2M). Immunoblotting was used to investigate effects of specific gene variants at the protein level. Further expression analysis identified A2M, exophilin 5 (EXPH5) and plectin (PLEC) as specific proteins linked to podocytes, endothelial cells, and the glomerulus. Subsequent protein array screening revealed the presence of non-HLA-specific antibodies, including TRIM21, after transplantation. Using Metascape for pathway and process enrichment analysis, we focused on the IL-17 signaling and chemotaxis pathways. ELISA measurements showed significantly elevated IL-17 levels in patients with recurrent FSGS (32.30 ± 9.12 pg/mL) compared to individuals with other glomerular diseases (23.16 ± 2.49 pg/mL; p < 0.01) and healthy subjects (22.28 ± 0.94 pg/mL; p < 0.01), with no significant difference in plasma CCL2/MCP-1 levels between groups. This study explores the molecular dynamics underlying recurrence of FSGS after transplantation, offering insights into potential biomarkers and therapeutic targets for the future development of individualized treatments for transplant patients.
Keywords: CCL2/MCP-1; IL-17; alpha-2 macroglobulin (A2M); exome sequencing; expression analysis; focal segmental glomerulosclerosis (FSGS); kidney transplantation; pathway and gene enrichment analysis; protein array screening; recurrent FSGS.