The impact of introducing deep learning based [18F]FDG PET denoising on EORTC and PERCIST therapeutic response assessments in digital PET/CT

EJNMMI Res. 2024 Aug 10;14(1):72. doi: 10.1186/s13550-024-01128-z.

Abstract

Background: [18F]FDG PET denoising by SubtlePET™ using deep learning artificial intelligence (AI) was previously found to induce slight modifications in lesion and reference organs' quantification and in lesion detection. As a next step, we aimed to evaluate its clinical impact on [18F]FDG PET solid tumour treatment response assessments, while comparing "standard PET" to "AI denoised half-duration PET" ("AI PET") during follow-up.

Results: 110 patients referred for baseline and follow-up standard digital [18F]FDG PET/CT were prospectively included. "Standard" EORTC and, if applicable, PERCIST response classifications by 2 readers between baseline standard PET1 and follow-up standard PET2 as a "gold standard" were compared to "mixed" classifications between standard PET1 and AI PET2 (group 1; n = 64), or between AI PET1 and standard PET2 (group 2; n = 46). Separate classifications were established using either standardized uptake values from ultra-high definition PET with or without AI denoising (simplified to "UHD") or EANM research limited v2 (EARL2)-compliant values (by Gaussian filtering in standard PET and using the same filter in AI PET). Overall, pooling both study groups, in 11/110 (10%) patients at least one EORTCUHD or EARL2 or PERCISTUHD or EARL2 mixed vs. standard classification was discordant, with 369/397 (93%) concordant classifications, unweighted Cohen's kappa = 0.86 (95% CI: 0.78-0.94). These modified mixed vs. standard classifications could have impacted management in 2% of patients.

Conclusions: Although comparing similar PET images is preferable for therapy response assessment, the comparison between a standard [18F]FDG PET and an AI denoised half-duration PET is feasible and seems clinically satisfactory.

Keywords: Artificial intelligence; Deep learning; EORTC; PERCIST; PET; [18F]FDG.