α,β-Desaturation and Formal β-C(sp3)-H Fluorination of N-Substituted Amines: A Late-Stage Functionalization Strategy Enabled by Electrochemistry

J Am Chem Soc. 2024 Aug 21;146(33):22982-22992. doi: 10.1021/jacs.4c02548. Epub 2024 Aug 12.

Abstract

Incorporation of C(sp3)-F bonds in biologically active compounds is a common strategy employed in medicinal and agricultural chemistry to tune pharmacokinetic and pharmacodynamic properties. Due to the limited number of robust strategies for C(sp3)-H fluorination of complex molecules, time-consuming de novo syntheses of such fluorinated analogs are typically required, representing a major bottleneck in the drug discovery process. In this work, we present a general and operationally simple strategy for site-specific β-C(sp3)-H fluorination of amine derivatives including carbamates, amides, and sulfonamides, which is compatible with a wide range of functional groups including N-heteroarenes. In this approach, an improved electrochemical Shono oxidation is used to set the site of functionalization via net α,β-desaturation to access enamine derivatives. We further developed a series of new transformations of these enamine intermediates to synthesize a variety of β-fluoro-α-functionalized structures, allowing efficient access to pertinent targets to accelerate drug discovery campaigns.

MeSH terms

  • Amines* / chemistry
  • Electrochemical Techniques
  • Halogenation*
  • Molecular Structure
  • Oxidation-Reduction

Substances

  • Amines