Designing multifunctional soft materials via pattern formation has been a major challenge for scientists and engineers. Soft materials based on polymers are the perfect candidates for designing such materials as they are not only easy to handle, but also offer diverse combinations of mechanical and chemical properties. Here, we present a polymer-based ternary system and reveal, using modelling and simulations, the mechanisms for creating patterned surfaces. Specifically, we consider polymer ionic liquid (PIL) blends and demonstrate that exposure to a uniform electric field results in the formation of ordered patterns through phase separation. Our approach is based on reaction-diffusion phenomena and utilizes Poisson-Boltzmann-Nernst-Planck equations to capture the long-range interactions of ionic liquids in both weak and strong segregation limits. Furthermore, we elucidate that the ordered patterns in our PIL blend can be tuned by changing the direction of the electric field. From the structural characterization point of view, we reveal that the presence of the electric field significantly enhances the domain growth rate and their respective ordering in a remarkable fashion. We believe this non-invasive technique is a significant step towards the development of ordered structures at microscopic length scales and can be utilized for micro-scale fabrication from soft materials.